Spontaneous Helical Structure Formation in Laminin Nanofibers.

نویسندگان

  • John M Szymanski
  • Mengchen Ba
  • Adam W Feinberg
چکیده

Laminin is a cross-shaped heterotrimer composed of three polypeptides chains that assembles into an insoluble extracellular matrix (ECM) network as part of the basement membrane, serving a vital role in many processes such as embryonic development, differentiation, and muscle and nerve regeneration. Here we engineered monodisperse laminin nanofibers using a surface-initiated assembly technique in order to investigate how changes in protein composition affect formation and structure of the network. Specifically, we compared laminin 111 with varying degrees of purity and with and without entactin to determine whether these changes alter biophysical properties. All the laminin types were reproducibly patterned as 200 μm long, 20 μm wide nanofibers that were successfuly released during surface-initiated assembly into solution. All nanofibers contracted upon release, and while initial lengths were identical, lengths of released fibers depended on the laminin type. Uniquely, the laminin 111 at high purity (>95%) and without entactin spontaneouly formed helical nanofibers at greater than 90%. Atomic force microscopy revealed that the nanofiber contraction was associated with a change in nanostructure from fibrillar to nodular, suggestive of refolding of laminin molecules into a globular-like conformation. Further, for the high purity laminin that formed helices, the density of the laminin at the edges of the nanofiber was higher than in the middle, providing a possible origin for the differential pre-stress driving the helix formation. Together, these results show that variation in the purity of laminin 111 and presence of entactin can have significant impact on the biophysical properties of the assembled protein networks. This highlights the fact that our understanding of protein assembly and function is still incomplete and that cell-free, in vitro assays can provide unique insights into the ECM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seeding-growth of helical mesoporous silica nanofibers templated by achiral cationic surfactant.

Helical mesoporous silica nanofibers with parallel nanochannels were synthesized in high yield via a novel seeding-growth method by using the achiral cationic surfactant cetyltrimethylammonium bromide (CTAB) as template without auxiliary additives. A general entropy-driven model taking into account the icelike structure water due to the hydrophobic effect was proposed to explain the formation o...

متن کامل

Laminin- and basement membrane-polycaprolactone blend nanofibers as a scaffold for regenerative medicine

Mimicking one or more components of the basement membrane (BM) holds great promise for overcoming insufficiencies in tissue engineering therapies. We have electrospun laminin nanofibers (NFs) isolated from the murine Engelbreth-Holm Swarm (EHS) tumor and evaluated them as a scaffold for embryonic stem cell culture. Seeded human embryonic stem cells were found to better maintain their undifferen...

متن کامل

Studies of Interfacial Interaction between Polymer Components on Helical Nanofiber Formation via Co-Electrospinning

Helical fibers in nanoscale have been of increasing interest due to their unique characteristics. To explore the effect of polymer type on helical fiber formation, three polymer systems, Poly(m-phenylene isophthalamide) (Nomex)/polyurethane (TPU), polystyrene (PS)/TPU and polyacrylonitril (PAN)/TPU are used to fabricate helical nanofibers via co-electrospinning. Differential scanning calorimetr...

متن کامل

Formation of triple helical nanofibers using self-assembling chiral benzene-1,3,5-tricarboxamides and reversal of the nanostructure's handedness using mirror image building blocks.

Intertwining triple helical nanofibers with an overall handedness have been formed from self-assembling chiral benzene-1,3,5-tricarboxamides , and , whereas the achiral benzene-1,3,5-tricarboxamide upon self-association gives rise to straight nanofibers without any twist and transmission electron microscopy images of chiral compounds clearly demonstrate that the handedness of the triple helical...

متن کامل

Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.

OBJECTIVE Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. APPROACH A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials chemistry. B

دوره 3 40  شماره 

صفحات  -

تاریخ انتشار 2015